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Brittle intergranular fracture of two-dimensional disordered solids as a random walk
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We present results of a hybrid experimental and numerical investigation of the roughness of
intergranular cracks in two-dimensional disordered solids. We characterize the statistical properties
of a series of brittle cracks in situations where the characteristic scale of damage is much smaller than
the grain size. We show that crack paths exhibit mono-a�ne scaling properties characterized by a
roughness exponent ⇣ = 0.50 ± 0.05 that can be explained from linear elastic fracture mechanics
in the limit of large samples. Our findings support the description of the roughening process in
two-dimensional brittle disordered solids by a random walk and sheds light on the origin of the
abnormally large exponents ⇣ = 0.6� 0.7 previously measured in 2D fractured specimens.
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Deciphering the statistical properties of fracture sur-
faces has been a long-standing goal in condensed matter
physics [1, 2]. This has been driven both by curiosity and
by the exploration of microscopic failure mechanisms that
govern the macroscopic resistance of materials. Fracture
surfaces reflect the complex interaction of cracks with
microscale material features, and therefore represent a
ready-made pathway to explore these mechanisms. The
observation of universal scaling behaviors on experimen-
tal fracture surfaces [3–5] has raised hope that a unified
theoretical framework may capture fracture processes in
disordered solids. However, such a theory is still missing
and the physical origin of the remarkable scaling proper-
ties of cracks are still debatted.

A major obstacle to overcome is the observation of
abnormally large roughness exponents ⇣ > 0.5 – or per-
sistent fracture profiles – in both two-dimensional (2D)
thin sheets and fully three-dimensional (3D) specimens,
while linear elastic fracture mechanics (LEFM) predicts
smaller exponents ⇣  0.5 [1, 2]. This paradox could
be understood in 3D solids thanks to the experimental
evidence of fracture roughness with an anti-persistent
behavior (⇣

3D

' 0.4) or even logarithmic correlations
(⇣

3D

' 0) [6–9], in agreement with LEFM [10–12]. In
these studies, and contrary to previous works on metallic
alloy [4], mortar [13], wood [14] or quasi-brittle rock [15]
where ⇣

3D

⇡ 0.75 were reported, fracture surfaces were
investigated at scales larger than the characteristic size
`

pz

of the damage processes taking place at the crack tip
during crack growth, satisfying thus the assumption of
brittle failure made in LEFM. This explanation was lat-
ter confirmed by the observation of two separate scaling
regimes: (i) a damage-driven roughness at small scales
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FIG. 1. (a) Brittle intergranular crack profiles obtained
with experimental fracture tests of thin sheets of expanded
polystyrene. (b) Large scale simulations of cohesive fracture
of random arrangements of polygonal elastic grains.

with ⇣

3D

⇡ 0.75, and (ii) an LEFM-consistent roughness
at larger scales, on the very same fracture surfaces of
mortar [13], phase-separated glass [8], and subsequently
on a large range of materials [16]. These results sug-
gested fracture roughness, which has already been suc-
cessfully applied to characterize material toughness from
post-mortem fracture surface analysis [17], as an e↵ec-
tive means to explore the characteristic length scales of
damage in materials.

Surprisingly, such a level of understanding is far from
being reached for the roughness of fractured 2D thin
sheets. The pseudo-line tension of the crack front result-
ing from elasticity that dominates the roughening process
in 3D brittle solids does not play any role in 2D [12, 18].
Instead, the crack trajectory in 2D solids is governed by
the stress state near the tip which depends on the local
crack inclination and the past trajectory [19]. These ef-
fects generally tend to maintain the crack path as close
as possible to a straight line. Consequently, LEFM based
models of crack propagation in disordered 2D solids pre-
dict anti-persistent fracture profiles, with ⇣

2D

 0.5, or
even no self-a�ne regimes [20, 21]. These predictions are
in contradiction with experiments that systematically re-
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port exponents in the range ⇣

2D

⇡ 0.6 � 0.7 as in paper
sheets [22–24], wood [25] or nickel-based alloy [26]. Re-
cent numerical works that take into account the nucle-
ation, growth and coalescence of damage cavities during
the failure of 2D solids report values ⇣ = 0.65�0.70 close
to those obtained in experiments [27, 28]. This find-
ing also compares with the predictions of random fuse
and random beam models that describe qualitatively mi-
crocracking processes in quasi-brittle solids [29, 30]. If
these results suggest that the persistent self-a�ne regime
reported in experiments emerges from damage and mi-
crocracking processes, the existence of a scale invariant
regime of roughness in brittle 2D thin sheets is still a
matter of debate [20, 21]. The exploration of this regime
on experimental and numerical examples is the central
point of this Letter.

In the spirit of Refs. [7, 11], we consider 2D consol-
idated granular materials, characterized by intergranu-
lar failure, as archetypes of disordered brittle materi-
als. Crack paths are investigated experimentally on non-
porous thin sheets of polystyrene beads, and numerically
in large scale 2D simulations of cohesive zone fracture
of non-porous random arrangements of polygonal grains.
The statistics of experimental and computed crack pro-
files is then fully characterized and shown to be reminis-
cent of the directed random walk with roughness expo-
nent ⇣ = 1

/2. In the last part, we take inspiration from
Ref. [20, 21], and propose a model of crack propagation
through disordered brittle solids that is used to interpret
our findings. Our study suggests a unified scenario for
the morphology of fracture paths in 2D disordered solids
that is discussed in the concluding section.

Experimental fracture tests of two-dimensional granu-

lar solids – In order to explore the crack morphology pro-
duced by brittle intergranular failure, we use commercial
30⇥ 60 cm2 panels of expanded polystyrene. Each panel
consists of consolidated pre-expanded polystyrene beads
with an average radius ` ' 2 mm. The radius of the
beads is comparable to the sample thickness, but is a
few hundred times smaller than the other dimensions of
the specimens. A 10 cm notch is machined at the cen-
ter of one of the short edges of the plate and serves as
the location of crack initiation. The experiments were
conducted at constant displacement rate through a four-
point bending device. This so-called double torsion test is
classically used to achieve slow crack propagation under
tensile (mode I) loading conditions in thin specimens [31].
In general, a groove is required to guide the crack parallel
to the initial notch. However, straight crack propagation
was achieved without it by applying four point forces, at
equidistances 2.5 cm and 10 cm from the notch, on the
top and bottom faces of the specimen. The bead cohe-
sion was su�ciently low to ensure brittle intergranular
failure as confirmed by in situ observations of the failure
processes. Crack profiles were extracted using digital im-
age analysis of pictures of the broken sample, an example
of which is shown on Fig. 1(a).

Large scale simulations of intergranular failure based

on sequential analyses – At variance with previous nu-
merical studies on crack roughening in heterogeneous ma-
terials [32], here we investigate crack propagation in a
material with a realistic microstructure by means of a nu-
merical approach that reproduces fairly well the processes
into play in experiments, namely intergranular brittle
failure of random packings of grains.

Material parameters are taken to be representative of
a polycrystalline alumina, Al

2

O
3

, which is described by
means of Voronoi microstructures similar to that shown
in Fig. 1(b). These microstructures are embedded in
the process region of a notched specimen that is sub-
sequently loaded by imposing uniform tensile stress on
both sample faces parallel to the notch. This test geom-
etry ensures crack propagation from the notch through
the whole specimen with a straight trajectory on aver-
age. The boundary conditions of the test setup as well
as the constitutive models for bulk and grain boundary
behavior are identical to those reported in Ref. [33]. Al-
though the numerical results have been obtained for a
well defined polycrystalline material, they are expected
to be representative of any consolidated granular material
with zero porosity under the assumption that dissipative
failure processes are confined to grain boundaries and
embedded within a process zone of size `

pz

much smaller
than the grain boundary length `. Indeed, under these
conditions, Shabir et al. [33] showed that the computed
intergranular crack paths are not influenced by cohesive
law parameters. This implies that in the limit of brittle
intergranular failure, there exists a unique crack path for
a given microstructure, irrespective of cohesive property
values and material type.

Intergranular crack paths are computed with a Gener-
alized Finite Element Method for polycrystals [34]. This
method provides an accurate description of the stress
field in a consolidated granular solid and yields reliable
crack paths [33]. However, simulations of brittle failure
with a number of grains which is large enough to explore
the scaling properties of the corresponding crack profiles
are prohibitively computationally expensive. To address
this di�culty, a sequential analysis approach has been
devised. The approach involves the division of a sim-
ulation into a suitable number of sub-simulations thus
reducing the computational e↵ort without sacrificing ac-
curacy. In each sub-simulations, a process window (each
of the regions enclosed by a blue line in Fig. 1(b)) is de-
fined based on the extent of the non-linear region around
the crack tip. This window follows the propagating crack
tip and is relocated accordingly. A highly refined mesh,
conforming to the procedure defined by Shabir et al. [33],
is used around the crack tip in the process window. Out-
side it, a coarse mesh with at least two elements along
each grain boundary is employed, and the grain bound-
aries are given a high sti↵ness to simulate perfect bond
except those lying on the crack line which are given a
zero elastic sti↵ness to simulate a traction-free crack.
We have compared our approach with a monolithic ap-
proach on a series of granular topologies and the resulting
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FIG. 2. Logarithmic representation of the height-height cor-
relation function of the experimental and computed crack pro-
files. At scales larger than the microstructural scale `, crack
roughness is self-a�ne with an exponent ⇣ ' 0.50. The inset
shows the exponential decay of the correlation of the crack
local slopes over a few length scales values `, confirming the
random walk behavior.
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FIG. 3. Statistical distribution P

�x

of height variations com-
puted for di↵erent scales �x. After normalization by �x

⇣ with
⇣ = 0.50, they collapse to a Gaussian distribution. The inset
shows that the studied values of �x belong to the self-a�ne
domain ` . �x . 100 `.

crack paths are identical. With this approach, detailed
in Ref. [35], large crack propagation simulations can be
carried out by considering a suitable number of cheaper
sub-simulations. Fig. 1(b) shows a typical example with
3140 grains in the process region and about 320 broken
grain boundaries.

Roughness characterization of the crack profiles – The
statistics of the experimental and computed crack pro-
files are now investigated. We start by computing their
height-height correlation function defined as �h(�x) =

h[h(x + �x) � h(x)]2i1/2

x

, where �x is the increment to
the spatial coordinate x. To take care of variations from

one sample to another, �h(�x) is averaged over six ex-
perimental and 18 simulated crack profiles. In the sim-
ulations, the grain arrangements consist of 3140 grains
(Fig. 1(b)) and are obtained with a centroidal Voronoi
tessellation algorithm. Fig. 2 shows the correlation func-
tions of experimental and computed profiles. Both follow
a power-law relation (�h(�x) / �x

⇣) which is reminis-
cent of self-a�ne properties characterized by the rough-
ness exponent ⇣

exp

= 0.48 ± 0.03 for the experiments
and ⇣

sim

= 0.50 ± 0.02 for the simulations. The errors
are obtained from the roughness exponents computed on
each profile analyzed separately. The self-a�ne behav-
ior extends over a rather broad range of length scales,
from the characteristic microstructural length ` to some
upper bound �x ⇡ 100 `. The value of the roughness
exponent close to the directed random walk exponent
⇣

rw

= 1

/2 is confirmed by the behavior of the function
C(�x) = hh0(x+ �x)h0(x)i

x

that shows no correlation of
the crack local slopes on length scales �x & `, as shown
in the inset of Fig. 2.
The full roughness statistics of the simulated crack pro-

files, provided by the distributions P
�x

of the height fluc-
tuations �h computed at some scale �x, are shown in
Fig. 3. When normalized by �x

⇣ with ⇣ = 0.50, the dis-
tributions corresponding to di↵erent values of �x collapse
to the same Gaussian distribution thus reflecting a mono-
a�ne behavior which is obtained as long as �x belongs to
the self-a�ne domain, as shown in the inset. Overall, our
results indicate that the investigated cracks follow paths
close to a directed random walk.
Theoretical interpretation – To understand this behav-

ior, we derive a trajectory equation for a crack in an
elastic medium with disordered fracture properties. Our
model builds on basic concepts of LEFM, and in par-
ticular on the principle of local symmetry [19, 36] that
predicts that cracks propagate along the direction of van-
ishing shearing mode II – note that even though speci-
mens are loaded under pure mode I tension, the pertur-
bations of the crack profile result in some local shearing
in the crack tip vicinity. The crack path h(x) is described
as a succession of straight segments of size �x along the
average propagation direction x. Following the idea of
Katzav et al. [20, 21], we start from the calculation of
Amestoy and Leblond [37] that predicts the kink angle
between two successive incremental steps

dh

dx

����
x

+

� dh

dx

����
x

�
= �2

k

II

(x)

k

I

(x)
. (1)

The local stress intensity factors k

I

(x) and k

II

(x) are
calculated from the crack path configuration before the
kink. We limit our analysis to slightly perturbed cracks
dh/dx ⌧ 1 so we can use the results of Cotterel and
Rice [19], completed by the ones of Movchan et al. [38],
that provide {khom

I

, k

hom

II

} as a function of the past tra-
jectory h(x̃ < x), the macroscopic stress intensity factors
{K

I

,K

II

} imposed by the loading system to the speci-
men, and the coe�cients {T,A} of the higher order terms
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in the development of the stress field near the tip:

8
>>>>><

>>>>>:

k

hom

I

(x) = K

I

k

hom

II

(x) = K

II

+
K

I

2

dh

dx

����
x

�
�
r

⇡

2
Ah(x)

�
r

2

⇡

T

Z
x

�1

dh/dx|
x̃p

x� x̃

dx̃.

(2)

Since in this study, the macroscopically applied shear-
ing K

II

is zero, combining Eqs. (1) and (2) yield to the
following closed form of the path equation

dh

dx

����
x

+

=
2
p
2p
⇡

T

K

I

Z
x

�1

dh/dx|
x̃p

x� x̃

dx̃+
p
2⇡

A

K

I

h(x). (3)

For a homogeneous material, this equation admits a
trivial stable solution, namely the straight crack path
h

hom(x) = 0, as both the T -stress and the value of
A are negative in the specimen geometries considered
here [19, 39]. To take into account spatial variations
in the material fracture properties, one introduces the
quenched noise �k

het

II

= �K

I

⌘(x)/2 that describes the
local shearing perturbations resulting from the mate-
rial microstructure. As the materials considered dis-
play a random microstructure with a characteristic size
`, we consider uncorrelated quenched noise for length
scales �x � `. Taking now into account both terms
k

II

= k

hom

II

+ k

het

II

for predicting the kink angle from
Eq. (1), one obtains

dh

dx

����
x

+

= � 1p
L
1

Z
x

�1

dh/dx|
x̃p

x� x̃

dx̃� h(x)

L
2

+ ⌘(x) (4)

where L
1

and L
2

are length scales emerging from the
specimen geometry and the loading conditions that are
calculated in the Supplemental Material [39]. Contrary
to the model proposed in Refs. [20, 21], we do not con-
sider variations of the elastic properties are rather ho-
mogenenous in the materials considered here. Instead,
the out-of-plane excursions of the crack result from the
variations of toughness, and more specifically from the
randomly oriented weak planes embedded in the material
granular microstructure. Note that a similar model was
previously proposed, but in the context of cracks prop-
agating through brittle materials with random fracture
properties [10–12].

To characterize the geometry of the predicted crack
profiles, the correlation of slopes is calculated from
Eq. (4). As shown in the Supplementaly Material, the
first and second term on the right hand side that are
both inversely proportional to

p
L
1

�
p
` and L

2

� `,
do not provide significant contributions, thus leading to

hdh/dx|
x+�x

⇥ dh/dx|
x

i
x

' h⌘(x+ �x)⇥ ⌘(x)i
x

. (5)

Local slopes of the crack profile have therefore the same
correlator as ⌘, and as such display no correlations at
scales �x � ` larger than the grain size. This property
characterizes a random walk: The predicted cracks are
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FIG. 4. Correlation function of the fracture profiles as pre-
dicted by the path equation (4) solved numerically. At large
length scales �x > `, cracks follow a random walk with expo-
nent ⇣ = 0.50 (red straight line). In the inset, the correlator of
the slopes of the predicted fracture profiles is compared with
the correlator of ⌘ describing the material microstructure.

Gaussian self-a�ne profiles with a roughness exponent
close to the random walk prediction ⇣

rw

= 1

/2, in ex-
cellent agreement with the numerical and experimental
observations. To describe more subbtle e↵ects, like the
saturation of the roughness �h observed in Fig. 2 for
�x > 100 `, Eq. (4) is solved numerically using the values
of L

1

' 39 000 ` and L
2

' 500 ` corresponding to the
loading conditions used in the simulations (see Supple-
mental Material). We use a short range disorder ⌘ with

correlator h⌘(x + �x) ⇥ ⌘(x)i
x

= �

2

e

�( �x

`

)2 and ampli-
tude � = 1. As shown in Fig. 4, our model captures not
only the scaling behavior of the crack path, but also the
saturation of the roughness at large scales that reflects
the finite size of the fracturing specimen. Finally, the
inset of Fig. 4 shows the corresponding correlator of the
local crack slopes that is, as expected from Eq. (5), close
to the one chosen for the quenched noise.
Discussion – Our experimental and numerical obser-

vations, supported by the theoretical analysis based on
LEFM proposed here, indicates that brittle cracks follow
a directed random walks in 2D materials as long as the
strutural length scales L

1

and L
2

are much larger than
the characteristic microstructural length scale `. More
specificaly, they are characterized by Gaussian fluctu-
ations of height and a self-a�ne behavior of exponent
⇣ ' 0.50 at scales larger than `.
Then, how to concile our results with the observa-

tions of persistent fracture paths with ⇣ ' 0.6 � 0.7
observed in paper [22–24], wood [25] or nickel-based al-
loy [26]? A key assumption of our model is the scale
separation ` � `

pz

between the characteristic size ` of
the microstructural disorder and the size `

pz

of the frac-
ture process zone where damage mechanisms localize in
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the crack tip vicinity. Indeed, LEFM assumes an elas-
tic response everywhere in the material, and so `

pz

= 0.
This assumption is satisfied in the fracturing materials
investigated here, as the cohesive zone length chosen in
the simulations and estimated in the experiments are
much smaller than the grain size `. On the contrary,
the extent of the fracture process zone does compare
with the characteristic microstructural feature in paper
(` ' 100 µm . `

pz

' 1 mm), wood (` ' `

pz

' 1� 5 mm)
and nickel-based alloy (` ' `

pz

' 100 µm) for which a
large exponent ⇣ ' 0.6�0.7 was measured. These obser-
vations lead us to postulate the following scenario:

• For `

pz

⌧ `, crack paths can be accurately de-
scribed by LEFM and follow a directed random
walk with exponent ⇣ = 0.50 in the limit of large
specimens, as shown in this letter.

• For `

pz

� `, the roughening process is domi-
nated by the process of damage coalescence that
takes place within the process zone. As shown
by Bouchinber et al.[27], this crack growth mech-
anism is compatible with the persistent path with
⇣ ' 0.6�0.7 observed experimentally in paper [22–
24], wood [25] and alloy [26].

Interestingly, this scenario also accounts for the puzzling
observation of random walk crack profiles with ⇣ ' 0.50

in paper sheets perforated with holes [40], while fracture
lines in virgin paper display ⇣ ' 0.65. The upscaling of
the characteristic size of the disorder, from the size of the
fibers ` ' 100 µm to the interdistance ` ' 1 µmm be-
tween holes, may have shifted the roughening mechanism
from a damage coalescence driven process to the brittle
mechanism described in this study.
To conclude, we would like to highlight the remark-

ably simple features of brittle crack paths in large 2D
specimens that show a Gaussian statistics of height fluc-
tuations and a roughness exponent close to the random
walk prediction ⇣ = 1

/2. This behavior reminds the one
of cracks in 3D brittle solids that also display Gaussian
statistics and mono-a�ne properties with ⇣ ' 0.4 � 0.5.
This contrasts with fracture surface properties emerg-
ing from damage coalescence that display complex multi-
a�ne features with fat-tail statistics both in 2D [41] and
3D materials [16, 42, 43]
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[25] T. Engøy, K. J. Måløy, A. Hansen, and S. Roux, Phys.

Rev. Lett. 73, 834 (1994).
[26] S. Morel, T. Lubet, J. L. Pouchou, and J. M. Olive,

Phys. Rev. Lett. 93, 065504 (2004).
[27] E. Bouchbinder, J. Mathiesen, and I. Procaccia, Phys.

Rev. Lett. 92, 245505 (2004).
[28] I. Ben-Dayan, E. Bouchbinder, and I. Procaccia, Phys.

Rev. E 74, 146102 (2006).
[29] S. Zapperi, P. K. V. V. Nukala, and S. Šimunović, Phys.
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I. DESCRIPTION OF THE EXPERIMENTAL FRACTURE TESTS

The fracture experiments are performed using the so-called double torsion test, with dimensionsW⇥L⇥d = 30⇥60⇥
1.5 cm3, which is shown schematically in Fig. 1. This geometry is classically used in experimental fracture mechanics
to achieve slow and controlled mode I crack propagation under tensile loading conditions in thin specimens [1, 2].
In general, a groove is required to guide the crack parallel to the initial notch, which here has a length c

0

= 10 cm.
However, straight crack propagation can be achieved without it by properly choosing the location of the application
of the forces. Two point forces are applied from the top of the specimen on each side of the notch at a distance
w

2

= 2.5 cm from it. Two parallel rails support the specimen from the lower side at a distance w

1

= 10 cm from
the notch. To avoid indenting the specimen, the upper jaws are not directly in contact with the supper face of the
sample, but apply a distributed force over an area of about 5 cm2 thanks to a thin plate placed between the jaw and
the specimen, as shown in Fig. 1(b). The upper jaw is displaced vertically at a constant velocity v

ext

= 0.1mm.s�1,
leading to a slow crack propagation until full failure of the specimen. During a test, the crack propagates over a
total distance �c

tot

' 50 cm that corresponds to about 250 polystyrene beads, allowing a rather extended domain of
length scale to investigate the scaling properties of the crack path (see Fig. 2 in the main text).

L

(b)

w

d

P/2P/2

w

2

w

1

P/2P/2

x

y

(a)

c

FIG. 1. Experimental setup: (a) Schematic representation of the fracture test. (b) Snapshot of the pre-notched specimen and
the loading system. There is an error in the difinition of the axis: x must correspond to the propagation direction while y must
be the normal direction to the crack.
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II. EXPRESSION OF THE STRUCTURAL LENGTH SCALES L1 AND L2

The structural length scales involved in the path equation (4) of the main text emerges from the specimen geometry
and the loading conditions. They are defined as

8
>>><

>>>:

L
1

=
⇡

8

✓
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I

T

◆
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L
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=
1p
2⇡

K

I

A

(1)

In these expressions, the stress intensity factor K

I

, the T -stress and the quantity A correspond to the prefactors in
the William’s expansion of the stress field
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for a straight crack [3, 4] where r is the distance to the crack tip along the propagation direction x. �
yy

is the opening
stress that drives the crack growth while �

xx

is the stress aligned with the propagation direction.

To obtain the values of K
I

, T and A , and so Lsim

1

and Lsim

2

for the specimen geometry used in the simulations, we
compute the stress field through finite element implementing the boundary conditions defined in Fig. 2. Note that
both L

1

and L
2

are independant of the amplitude of the applied stress, so we consider a unit stress � = 1 Pa in
our simulations. The elements of the mesh are chosen so that their size decreases exponentially while approaching
the crack tip, down to a minimum element size of W/109 where W is the specimen width. This allows capturing
the square root divergence of the stress field whitout exceeding reasonable computational times, as the total node
number can be maintained close to 5000. The variations of �

yy

(r) and �

xx

(r) are then fitted using the William’s
expension (2) following the procedure proposed in Ref. [5]: First, K

I

is obtained from the square root divergence
of the stress in the near tip region. Then, the leading term K

I

/

p
2⇡r of the stress field expansion is substracted to

the total stress so that the residuals ��

yy

(r) = �

yy

(r) � K

I

/

p
2⇡r and ��

xx

(r) = �

xx

(r) � K

I

/

p
2⇡r can be fitted

by the a�ne functions ��

yy

= �AR and ��

yy

= �T � BR where R =
p
r. This provides the value of T and A,

while B, that is not relevant for our analysis, is let aside. Finally, using the Eqs. (1), one obtains Lsim

1

= 40W and
Lsim

2

' W/2 for a crack lying near the middle of the specimen of Fig. 2 as considered during the simulations. From
the relation W ' 1000` between the specimen width and the grain boundary length, one obtains structural lengths
Lsim

1

= 40 000 ` and Lsim

2

' 500 ` that are much larger than the microstructural length.

To determine Lexp

1

and Lexp

2

in the case of the experimental fracture tests of Fig. 1, we follow a di↵erent procedure,
as the bending conditions imposed to the specimen and the complex crack front geometry (see e.g. [6]) would have
required a fully 3D finite element analysis of the stress field in the crack region. Instead, we estimate these length
scales from analytical approximated formulas for K

I

, T and A. In the double torsion test used in our experiments,

the intensity factor at the tip of a straight crack follows K

I

' (w
1

� w

2

)P

d

2

p
W

, [2]. An estimate of the T -stress can be

obtained using the relation T = �

(nc)

xx

� �

(nc)

yy

[4] where the superscript (nc) refers to the stress field calculated for the
same geometry and loading conditions, but without crack. As the conditions are close to pure bending in the middle

part of the specimen, the stress �

(nc)

xx

aligned with the crack propagation direction is close to zero while the stress

�

(nc)

yy

can be estimated at the bottom surface of the specimen where the tensile state of stress drives the crack, leading

to T ' ��

(nc)

yy

' � (w
1

� w

2

)P

d

2

L

, so that Lexp

1

' L

2

W

from Eq. (1). To estimate Lexp

2

, we take inspiration from other

fracture tests: In the thin strip geometry used in the simulations and analyzed in the previous paragraph, a finite
element analysis of the stress field in the near tip region shows that L

2

' W . Similarly, in the double cleavage drilled
compression test analyzed in Ref. [5], the third order term, proportional to A ⇠ 1/L

2

in the Williams’ expansion of
the near tip field, is also set by the specimen width W . As a result, we assume a similar behavior for the bending test
used in the experiments, so that Lexp

2

' W . This relation is supported by the physical intuition that the term h/L
2

in the path equation (4) of the main text should be revelant when the crack “feels” the specimen boundary, i..e. for
crack path excursions h of the same order as the specimen width.

The expressions of the structural lengths and their value expressed as a function of the microstructural scale `,
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namely the bead diameter in the experiments and the grain boundary length in the simulations, are

8
>><

>>:

Lexp

1

' L

2

W

' 600 ` and Lexp

2

' W ' 150 `

Lsim

1

' L

2

W

' 40 500 ` and Lsim

2

' W ' 500 `.

(3)

III. PERTURBATIVE RESOLUTION OF THE PATH EQUATION

We now introduce the variables

✏

1

=
p
`/L

1

and ✏

2

= `/L
2

(4)

that are equal to ✏

sim

1

' 0.005 and ✏

sim

2

' 0.002 in the simulation and ✏

exp

1

' 0.04 and ✏

exp

2

' 0.007 for the experiments.
Using the change of variables

8
><

>:

w = x/`

f(x) = h(x/`)/`

�(x) = ⌘(x/`),

(5)

we can rewrite the path equation (4) of the main text as

df

dw

����
w

+

= �✏

1

Z
w

�1

f

0(w̃)p
w � w̃

dw̃ � ✏

2

f(w) + �(w). (6)

where f and w are dimensionless and provide the crack perturbation and the distance along the mean crack path
in units of `, respectively. The small values of ✏

1

and ✏

2

indicate that they can be used as small parameters to
perturbatively solve the path equation in the context of the fracture tests performed in this work. Thus we seek a
solution in the form

f(w) = f

(0)(w) + ✏

1

f

1

(w) + ✏

2

f

2

(w). (7)

Inserting this expression into the path equation (6) and separating zeroth order terms from those proportional to ✏

1

or ✏
2

we find12
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(0)(w)

`

(8)

where I(w) =
Z

w

�1

f

0(0)(w̃)p
w � w̃)

dw̃. Coming back to the original variables, the zeroth order equation gives

dh

(0)

dx

����
x

+

= ⌘(x). (9)

We remind that the term ⌘ describes the local shear perturbations resulting from the material microstructure. We
therefore expect it to behave as a short range correlated quenched noise. As a result, the solution h

(0) of the zeroth
order equation predicts a directed random walk. This is consistent with the numerical and experimental observations
reported in this study.

1 EvdG to LP: Why distinguish between dh/dx and h

0 ?I have corrected this and use now only the notation dh/dx

2 EvdG to LP: Since only L1 depends on L what is L?, I do not think that ✏1 and ✏2 can be considered as independent variables. Thus I
would conclude dh1/dh = �I(x) and dh2/dh = h

(0)(x)/`. Do you disagree? I don’t consider ✏1 and ✏2 as independant variables: I just
assume that they are both small with respect to one.
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FIG. 2. Geometry and boundary conditions for the notched specimen employed in the simulations.

We now seek to determine the correlation function of the local slopes along the crack path which, using the
decomposition (7), but for the original quantities h(x) = h

(0)(x) + ✏

1

h

1

(x) + ✏

2

h

2

(x), reads

C(�x) = hh0(x)h0(x+ �x)i
x

= hh0(0)(x)h0(0)(x+ �x)i
x

+ hh0(0)(x) [✏
1

h

0
1

(x+ �x) + ✏

2

h

0
2

(x+ �x)]i
x

+ hh0(0)(x+ �x) [✏
1

h

0
1

(x) + ✏

2

h

0
2

(x)]i
x

+ ...

(10)

Using ✏

1

⌧ 1 and ✏

2

⌧ 1, the terms proportional to ✏

1

and ✏

2

can be neglected, so that only the first line that writes
as C(�x) = C

⌘

(�x) = h⌘(x)⌘(x + �x)i
x

after using Eq. (9). The correlator of the local slopes therefore coincides
with the one of the quenched disorder, so it is is essentially zero for �x > `, as also observed in our experiments and
simulations.3

4

IV. LARGE SCALE SIMULATIONS OF INTERGRANULAR FAILURE THROUGH
SEQUENTIAL ANALYSES AND THE GENERALIZED FINITE ELEMENT METHOD

V. TEST SETUP AND MATERIAL

The geometry and boundary conditions of the test setup are reported in Fig. 2. The material parameters are taken
to be representative of an average polycrystalline alumina, Al

2

O
3

, with Young’s modulus E = 384.6 GPa and Poisson’s
ratio ⌫ = 0.237. Plane strain analyses are performed under the assumption of small elastic strains and rotations. The
notched specimen is loaded by a uniform tensile stress, �, which is ramped incrementally under quasi-static loading
conditions. A centroidal Voronoi tessellation algorithm is used to generate 18 di↵erent topologies of 3140 grains each.
Voronoi arrangements are embedded in the process zone shown in Fig. 2. An average grain size of approximately
20 µm has been used. This size corresponds to an average grain boundary length ` of 10.62 µm. The number of
grain boundaries in front of the notch tip is around 320 on average and this implies that the number of cracked grain
boundaries will be around the same figure.

The linear elastic isotropic grains are connected to each other by means of cohesive grain boundaries which follow the
Xu-Needleman cohesive law [7] incorporating secant unloading and reloading behavior. According to Shabir et al. [8],
intergranular crack paths in brittle polycrystals are unique for a given microstructure, irrespective of cohesive law
parameters. Following this argument, the mode-I fracture energy, G

Ic

, and the maximum normal cohesive strength,
�

max

, are set equal to 39.6 Jm�2 and 0.6 GPa, respectively. With this set of cohesive law parameters, relatively coarse
meshes can resolve the cohesive law along grain boundaries.

3 EvdG: meaning of tilde in x̃? This is the varaible of integration
EvdG: Upon more careful reading it looks like x̃ is just an auxiliary coordinate parallel to x. But so is u. Would it make sense to use u

here instead of x̃? Just to iron out unnecessary variables .... It is now corrected
4 EvdG to LP: It is not entirely clear to me if we need this paragraph. The main text only states Eq. (6), i.e. eq. (11) from the SM
neglecting terms proportional to ✏1 and ✏2. The relevance of these latter terms is briefly discussed in the subsequent paragraph, which
I’m afraid I don’t quite understand (Angelo’s comment in footnote ?? makes sense to me too). What about including the part until Eq.
(9) and then simply say that the terms proportional to ✏1 and ✏2 are negligible since they are small, see SM Eq. (2)? I agree
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A. Generalized Finite Element Method for polycrystals

Crack paths are computed using a Generalized Finite Element Method for polycrystals [9]. In this approach, a
polycrystal is obtained by the superposition of a polycrystalline topology on a simple background finite element mesh
which, unlike in the classical finite element method, does not need to conform to the local features of the topology. This
superposition is automatically handled using the partition of unity property of finite element shape functions hence
automating the mesh generation stage. Being an advanced version of the standard Finite Element Method (FEM),
this method provides an accurate description of the stress field around a propagating crack tip in polycrystalline
materials and therefore predicts reliable crack paths [8].

B. Sequential polycrystalline analysis

The determination of the roughness exponent calls for computational approaches that can deliver accurate crack
paths in polycrystalline aggregates with a large number of grains. Accuracy of the crack path is ensured by requiring
a su�ciently refined mesh along grain boundaries and around triple junctions [8]. These meshing requirements result
in simulations that cannot be handled using traditional fully resolved monolithic analyses. Without recurring to
sophisticated approaches [? ], we have developed a simple sequential polycrystalline analysis approach to trace the
crack path in polycrystalline aggregates with a large number of grains. The method involves the division of a simulation
into a suitable number of sub-simulations. The approach is illustrated in Fig. 3 by means of a 90-grain topology which
has been analyzed in three di↵erent ways using the specimen in Fig. 2. For reference, the first simulation uses a highly
refined mesh along each grain boundary (GB) following the rules suggested by Shabir et al. [8]. This is depicted
in Fig. 3(a) where final and traction-free (notch line in this case) crack lines5 are shown in red and green colors,
respectively. The load-displacement curve is presented in Fig. 3(e). Based on this analysis, a von Mises equivalent
stress plot after a short crack extension is reported in Fig. 3(b). In this plot, an active process zone can be defined
based on the extent of the non-linear region around the crack tip. This window follows the propagating crack tip
and is relocated accordingly.6 In the second analysis, we allowed non-linearities from the cohesive law within the
active process zone only. Outside this window, the grain boundaries are given a high sti↵ness to simulate perfect
bond except those lying on the crack line which are given a zero elastic sti↵ness to simulate a traction-free crack.
This analysis yielded the same crack path and load displacement curve as obtained in the first analysis (cf Figs. 3(a)
and (e)). From this result, it can be deduced that a highly refined mesh is needed only in the active process zone to
account for the non-linearities. The region outside the active process zone, following mostly a linear elastic behavior,
can be discretized with a coarser mesh. Following this argument in our third analysis, we split the simulation into a
sequence of sub-simulations. In this academic example we consider two sub-simulations as follows:

1. A highly refined mesh as proposed in [8] is provided around the crack tip in the active process zone. Outside
this region, at least two elements are provided along each grain boundary. Both regions can be seen in Figs. 3(c)
and (d) for each sub-simulation.

2. When a crack tip reaches the end of an active process zone in the crack propagation direction, the simulation is
stopped and the resulting crack profile is saved —the crack path obtained from simulation 1 is indicated by the
red line in Fig. 3(c). The next sub-simulation is launched considering the saved crack profile from the previous
simulation —the green line in Fig. 3(d). A new crack tip is defined by reducing the length of the loaded crack
profile such that the new tip is now at a position where the cohesive strength of the previous simulation would
be negligible —the green line in Fig. 3(d) has a reduced length than the length of the corresponding red line in
Fig. 3(c). In other words, we make sure that nonlinear processes are accurately captured by enclosing nonlinear
regions with an active process zone. We have found that an overlap of ⇠ 2.5` between two consecutive active
process zones satisfies this requirement with the current choice of cohesive law and parameters.

The sequential polycrystalline analysis yielded the same crack path as reported in Fig. 3(a) which was obtained
with the first monolithic analysis. The equivalence of this analysis to the monolithic analysis can also be appreciated
from the load-displacement curves shown in Fig. 3(e). In this figure, the curves related to the two sub-simulations
follow the curve from the first analysis in their respective domains. With regards to the stress field, we could hardly
find any di↵erence between the two analyses.

5 ERIK TO ANGELO: I’m afraid this (especially to gather with the legend in Fig. 3a) may be confusing as it sounds like the simulated
crack is not traction free. What about initial notch (or crack) in green and simulated crack in red?

6 ERIK TO ANGELO: I think there is a jump in the logic here. In my understanding the idea is to use this moving process zone in the
second (new) simulation.



6
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(c) (d) simulation 2
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crack obtained from analysis
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active process zone

FIG. 3. Sequential polycrystalline analysis of a 90-grain topology: (a) highly refined mesh with final crack path; (b) von Mises
equivalent stress corresponding to the simulation in (a) with an active process zone defined approximately considering the
extent of non-linear region around a typical crack tip as shown; (c and d) sub-simulation 1 and 2 with a highly refined mesh
in the active process zone —at least two elements along each grain boundary are provided outside the active process zone;
(e) load-displacement curves corresponding to the simulations in (a), (c) and (d). Only the process zone is showed in (a) to (d).
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at least 2 elements along a GB outside active process zone

traction free crack

crack obtained from analysis

active process zone enclosing
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highly refined region inside active process zone

(a) division of a simulation with 323 cracked GB’s in front of notch tip into 8 sub-simulations

active process zone

(c) last simulation

traction-free crack

(b) first simulation

direction of crack propagation

crack obtained from analysis

FIG. 4. Sequential polycrystalline analysis of a 3140-grain topology. Only the process zone is showed. For convenience, the
process zone has been rotated by �90�.
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FIG. 5. Load-displacement curves obtained through sequential polycrystalline analysis for the 3140-grain topology depicted in
Fig. 4.

With this approach, large crack propagation simulations can be carried out by considering a suitable number of
computationally-doable sub-simulations. A typical example employing a 3140-grain topology and eight sub-simulations
is shown in Fig. 4(a) with the first and last sub-simulation reported in Figs. 4(b) and (c), respectively. The blue boxes
in these figures are the active process zone which show the area where the crack is allowed to propagate within a
sub-simulation. The corresponding load-displacement curves for all the eight sub-simulations are reported in Fig. 5.
From the inset in this figure, the complexity of the analysis, overwhelmed by many sharp snap-backs, can be easily
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recognized —it is worth noticing that each jump in the curve corresponds to the fracture of one grain boundary.
Unlike classical adaptive refinement approaches [10–12], the only information that is transferred from simulation to

simulation is the crack path. We have compared our approach with a monolithic approach on a series of polycrystalline
topologies and the resulting crack paths are identical.
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